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a b s t r a c t

A high-order particle-source-in-cell (PSIC) algorithm is presented for the computation of
the interaction between shocks, small scale structures, and liquid and/or solid particles
in high-speed engineering applications. The improved high-order finite difference
weighted essentially non-oscillatory (WENO-Z) method for solution of the hyperbolic con-
servation laws that govern the shocked carrier gas flow, lies at the heart of the algorithm.
Finite sized particles are modeled as points and are traced in the Lagrangian frame. The
physical coupling of particles in the Lagrangian frame and the gas in the Eulerian frame
through momentum and energy exchange, is numerically treated through high-order inter-
polation and weighing. The centered high-order interpolation of the fluid properties to the
particle location is shown to lead to numerical instability in shocked flow. An essentially
non-oscillatory interpolation (ENO) scheme is devised for the coupling that improves sta-
bility. The ENO based algorithm is shown to be numerically stable and to accurately capture
shocks, small flow features and particle dispersion. Both the carrier gas and the particles are
updated in time without splitting with a third-order Runge–Kutta TVD method. One and
two-dimensional computations of a shock moving into a particle cloud demonstrates the
characteristics of the WENO-Z based PSIC method (PSIC/WENO-Z). The PSIC/WENO-Z com-
putations are not only in excellent agreement with the numerical simulations with a third-
order Rusanov based PSIC and physical experiments in [V. Boiko, V.P. Kiselev, S.P. Kiselev, A.
Papyrin, S. Poplavsky, V. Fomin, Shock wave interaction with a cloud of particles, Shock
Waves, 7 (1997) 275–285], but also show a significant improvement in the resolution of
small scale structures. In two-dimensional simulations of the Mach 3 shock moving into
forty thousand bronze particles arranged in the shape of a rectangle, the long time accuracy
of the high-order method is demonstrated. The fifth-order PSIC/WENO-Z method with the
fifth-order ENO interpolation scheme improves the small scale structure resolution over
the third-order PSIC/WENO-Z method with a second-order central interpolation scheme.
Preliminary analysis of the particle interaction with the flow structures shows that sharp
particle material arms form on the side of the rectangular shape. The arms initially shield
the particles from the accelerated flow behind the shock. A reflected compression wave,
however, reshocks the particle arm from the shielded area and mixes the particles.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

High-speed gas flows encountered in supersonic aircraft, hypersonic space vehicles, gas turbines and explosions are com-
monly modeled through the nonlinear hyperbolic conservation laws in the form
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where Q is a vector of conservative variables and F is the flux vector. Shocks are typical in these high-speed flows and can
appear as finite time singularity solutions in the conservation laws.

For the capturing of shock solutions in numerical approximations of (1) many nonlinear shock capturing schemes have
been devised, e.g. TVD, PPM, ENO, CENO and WENO schemes. Among these schemes, the high-order, high-resolution finite
difference weighted essentially non-oscillatory schemes (WENO) [1,2] have proven to be very effective in capturing the fine
scale and delicate structures of the physical phenomena involving large gradients and shocks. The classical WENO schemes
owe their success to the use of a dynamic set of stencils, where a nonlinear convex combination of lower-order polynomials
adapts either to a higher-order approximation at smooth parts of the solution, or to an upwind spatial discretization that
avoids interpolation across discontinuities and provides the necessary dissipation for shock capturing. The nonlinear coeffi-
cients of the convex combination, hereafter referred to as weights, are based on the local smoothness indicators, which mea-
sure the sum of the normalized squares of the scaled L2 norms of all derivatives of the lower-order polynomials [2]. An
essentially zero weight is assigned to those lower-order polynomials whose underlining stencils contain high gradients
and/or shocks, yielding an essentially non-oscillatory solution at and near discontinuities. At smooth parts of the solution,
higher-order is achieved through the mimicking of the central upwinding scheme of maximum order, when all smoothness
indicators are about the same size. The classical WENO schemes are designed based on the successful class of high-order
schemes called the essentially non-oscillatory, or ENO schemes of Harten et al. [3–5]. The first classical WENO scheme
was introduced by Liu et al. in their pioneering paper [6], in which a third-order accurate finite volume WENO scheme
was designed. In 1996, Jiang and Shu [2] provided a general framework to construct arbitrary order accurate finite difference
WENO schemes, which are more efficient for multi-dimensional calculations. Higher-order finite difference classical WENO
schemes are designed in [1]. Improvement of the classical WENO scheme, namely the mapped WENO scheme [7] and
WENO-Z scheme [8], was also derived. In this study, the high-order WENO-Z scheme is employed. In comparison to classical
WENO schemes, the WENO-Z method has a lower dissipation in combination with a proven formal order of accuracy [8]. As a
result the method captures shock in a physically sharp manner, while the high order and high-resolution nature of the
scheme ensures an efficient and accurate resolution of small scales in smooth regions.

In many high-speed flow applications, shocks interact with solid or liquid particles. For example, debris interacts with
shocks and gas turbulence in dust explosions. In lithotripsy, kidney stones are broken into smaller kidney stone particles
by means of shocks. Fuel droplets interact with a chemically reacting gas containing shock waves in high-speed combustors.
When the flow containing shocks is turbulent, the scale range of the continuum flow is enormous. The mutual exchange of
momentum and energy of particles and the continuum flow results in even more complex, multi-scale physics. The tremen-
dous complexity of the problem leaves many physical phenomenon less understood.

The direct analysis requires the computation of the complete flow over each particle, the tracking of individual solid or
liquid complex particle boundaries along their paths, and the tracking of shock waves in the moving frame. These individual
computational components are difficult to resolve and currently barely within reach even with the latest advances of com-
putational technologies. The combined interaction between flows with shocks and particles has an immense complexity,
scale range and size, that can currently potentially be analyzed only in highly idealized situation with a few particles.

Simplified models for the particle and the particle interactions with the shock containing carrier gas are required to han-
dle more realistic situation in applications of shocked particle-laden flows. The point particle modeling in the particle-
source-in-cell (PSIC) method introduced by Crowe et al. [9] provides such a model that enables larger scale analysis. The PSIC
method is a particle-mesh type algorithm, that is also commonly used for simulation of plasma [10]. In particle-mesh type
methods, the continuum model is approximated on a static mesh, while the particle dynamics are traced along their path in a
Lagrangian frame. The static mesh solution and the dynamic particle-mesh solution are subsequently coupled through inter-
polation. In the PSIC method, particles are assumed to have a single point contribution. Point particles are carried by the car-
rier gas flow that is governed by a continuum equation, which in this study are the Euler equations governing the gas
dynamics in an Eulerian frame. The influence of the particles on the carrier gas flow is modeled through point sources
and appears as source terms in the continuum equations. The point modeling permits the simulation of a large number
of particles and provides sufficient resolution and accuracy to model the particle-laden flows. Particle-mesh is the only
method that facilitates affordable computations of real geometries, while accurately representing individual particle dynam-
ics. The cloud-in-cell (CIC) [11] modeling enhances the computational feasibility by decreasing the modeling level of the par-
ticle. Rather than modeling a single particle, a cloud of particles is modeled as point contribution in CIC. The individual cloud
dynamics are traced in the Lagrangian frame like in the single particle model. While with the cloud modeling some of the
particle detail is less, it can be shown to be sufficiently accurate for most practical applications [11]. In this study, we shall
refer to particle clouds as particles unless specified otherwise.

The particle-mesh method typically relies on relatively simple, coarse grids and/or low-order numerical schemes (typi-
cally first or second-order schemes). This limits the treatment of realistic problems with a large range of active temporally
and spatial scales. Dispersion, diffusion and aliasing errors are well-known to plague the spatial accuracy of the solution [10].
To reduce these errors, high-order high-resolution numerical algorithms are essential for efficient long time simulation of
the shock-particle-laden flow [13]. In Jacobs and Hesthaven [14,15], a high-order based particle-mesh method for simulation
of plasma was shown to reduce these errors. The high-order, high-resolution WENO methods were also shown to capture
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small scales structures more accurately and efficiently than the lower-order schemes in the long time simulation of the
Richtmeyer–Meshkov Instability [16].

The main purpose of this study is to extend the advantages of high order-methods to a high-order PSIC method based on
the high-order, high-resolution WENO-Z scheme (PSIC/WENO-Z). We propose a high order ENO interpolation from the car-
rier flow to the particles and a high order weighing of the momentum and energy from the particle to the carrier flow, yield-
ing a high order solution of particle-laden gas flow with shocks in the Eulerian–Lagrangian frame. We also identify future
improvements and extension of the algorithm to more realistic applications.

We first validate the PSIC/WENO-Z method and verify accuracy and efficiency improvements with the one dimensional
numerical lower PSIC simulation and experiments in Boiko et al. [12]. We then present the two-dimensional simulation of
shock interaction with 40 K bronze particle arranged in a rectangular shape in front of a Mach 3 shock. The setup is the same
as the one used in the numerical experiment with PSIC method based on a third order Rusanov scheme in [13] except that
the flow is assumed to be periodical in the y direction. At early times the large and small scales structures are similar to the
results in [13]. We show that the capturing of small scale with a fifth-order PSIC/WENO-Z method is superior to the captur-
ing with a third order PSIC/WENO-Z method. We illustrate long time accuracy of high order PSIC/WENO-Z with new results
of the shock-particle interaction for long time evolution of the particle-laden flow field in a large physical domain. The
behavior of the flow and particle trajectories shows a strong nonlinear interaction and coupling of the carrier flow and
the particles and warrants a further detailed numerical and experimental investigation.

This paper is organized as follows: In Section 2, the physical model of the carrier flow and the particles are presented. In
Section 3, we give a brief description of the improved fifth order weighted essentially non-oscillatory finite difference
WENO-Z scheme for hyperbolic conservation laws. In Section 4 the coupling of the carrier flow in the Eulerian frame and
the particle in the Lagrangian frame is discussed in detail. We present the high order ENO interpolation scheme that is used
to interpolate the gas properties from the Eulerian frame to the particle in the Lagrangian frame. The high order weighing for
exchange of momentum and energy from the particle in the Lagrangian frame to the carrier gas at a grid point in the Eulerian
frame are also given. Numerical experiments with the PSIC/WENO-Z method are discussed in Section 5. The high order PSIC/
WENO-Z method is validated against existing one dimensional numerical results and experimental data. The long time accu-
racy is also demonstrated in long time simulations of the two-dimensional shock interaction with 40 K bronze particle. Con-
clusions and direction of future research are reserved for the final Section 6.

2. The physical model and particle-source-in-cell method

In the particle-source-in-cell (PSIC) method the Eulerian continuum equations are solved for the carrier flow in the Eule-
rian frame, while particles are traced along in the Lagrangian frame. In the following, we present the coupled system of Euler
equations that govern the gas flow and kinematic equations that govern the particle motion. We shall denote the subscript p
for the particle variables and f for the gas variables at the particle position. Variables without subscript refer to the gas vari-
ables unless specified otherwise.

2.1. Euler equation in the Eulerian frame

The governing equations for the carrier flow are the two-dimensional Euler equations in Cartesian coordinates given by:
Q t þ Fx þ Gy ¼ S; ð2Þ
where
Q ¼ ðq;qu;qv ; EÞT ;
F ¼ ðqu;qu2 þ P;quv ; ðEþ PÞuÞT ;
G ¼ ðqv ;quv ;qv2 þ P; ðEþ PÞvÞT ;

ð3Þ
and � �

P ¼ ðc� 1Þ E� 1

2
qðu2 þ v2Þ ; c ¼ 1:4: ð4Þ
The equation of state closes the system of equations
T ¼ cPM2

q
; ð5Þ
where M ¼ U=
ffiffiffiffiffiffiffiffiffi
cRT

p
is a reference Mach number determined with the reference velocity, U and reference temperature, T. The

source term, S, accounts for the effect of the particles on the carrier gas and will be discussed in more detail below.

2.2. Particle equation in the Lagrangian frame

Particles are tracked individually in the Lagrangian frame. The kinematic equation describing the particle’s position~xp, is
given as
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d~xp

dt
¼ ~vp; ð6Þ
where ~vp is the particle velocity vector.
The particles’ acceleration is governed by Newton’s second law forced by the drag on the particle. With particles assumed

spherical, we take the drag as a combination of the Stokes drag corrected for high Reynolds and Mach number and the pres-
sure drag leading to the following equations governing the particle velocity [12],
d~vp

dt
¼ f1

~v f �~vp

sp

� �
� 1

qp
$Pjf ; ð7Þ
where ~v f is the velocity of the gas at the particle position, and qp the particle density. The first term on the right hand side
describes the particle acceleration resulting from the velocity difference between the particle and the gas. The second term in
the right hand side of (7) represents the particle acceleration induced by the pressure gradient in the carrier flow at the par-
ticle position. The particle time constant sp ¼ Red2

pqp=18, where dp is the particle diameter, is a measure for the reaction time
of the particle to the changes in the carrier gas. Re ¼ UL=m is the Reynolds number of the carrier gas flow with L a reference
length and m the dynamic viscosity. In this study, we assume Re large and we therefore do not model viscous effects in the
governing Eulerian equations for the gas flow (2).

f1 is an empirical correction factor [12] that yields an accurate determination within 10% of measured particle accelera-
tion for higher relative particle Reynolds number up to Ref ¼ j~v f �~vpjdp=m ¼ 1� 104 and relative particle Mach number up to
Mf ¼ j~v f �~vpj=

ffiffiffiffiffi
Tf

p
¼ 1:2 and is given by
f1 ¼
3
4

24þ 0:38Ref þ 4
ffiffiffiffiffiffiffi
Ref

q� �
1þ exp

�0:43
M4:67

f

" # !
: ð8Þ
From the first law of thermodynamics and Fourier’s law for heat transfer, the equation for temperature is derived as
dTp

dt
¼ 1

3
Nu
Pr

Tf � Tp

sp

� �
; ð9Þ
where Pr ¼ 1:4 is the Prandtl number, taken as its typical value for air in this paper. Nu ¼ 2þ
ffiffiffiffiffiffiffi
Ref

p
Pr0:33 is the Nusselt num-

ber corrected for high Reynolds number.

2.3. Source term S for the Euler equation

Each particle generates a momentum and energy that affects the carrier flow. The volume averaged summation of all
these contributions gives a continuum source contribution on the momentum and energy equation in (2) as:
~Smð~xÞ ¼
XNp

i¼1

Kð~xp;~xÞ~Wm; ð10Þ

Seð~xÞ ¼
XNp

i¼1

Kð~xp;~xÞð~Wm �~vp þWeÞ; ð11Þ
where Kðx; yÞ ¼ Kðjx� yjÞ=V is a normalized weighing function that distributes the influence of each particle onto the carrier
flow. Wm ¼ mpf1ð~v f �~vpÞ=sp and We ¼ mpðNu=ð3PrÞÞðT � TpÞ=sp are weigh functions describing the momentum and energy
contribution of one particle, respectively. mp is the mass of one spherical particle which can be derived from sp. Np is the total
number of particles in an finite volume V. The high order normalized weighing function will be discussed in Section 4.

3. Improved weighted essentially non-oscillatory schemes

In this section we briefly describe the fifth-order weighted essentially non-oscillatory conservative finite difference
scheme (WENO-Z) [8] when applied to hyperbolic conservation laws as in (1). Higher-order versions up to eleventh order
of the WENO-Z scheme have been developed and will appear in another article. Without loss of generality, we will restrict
our discussion to the one dimensional scalar case and the fifth-order WENO-Z reconstruction step. The extension to a system
of equations and to higher spatial dimensions is straightforward in the Cartesian coordinates.

Consider a uniform grid defined by the points xi ¼ iDx; i ¼ 0; . . . ;N, which are also called cell centers, with cell boundaries
given by xiþ1

2
¼ xi þ Dx

2 , where Dx is the uniform grid spacing. The semi-discretized form of (1), by the method of lines, yields a
system of ordinary differential equations
duiðtÞ
dt

¼ �@f
@x

����
x¼xi

; i ¼ 0; . . . ;N; ð12Þ
where uiðtÞ is a numerical approximation to the point value uðxi; tÞ.
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A conservative finite difference formulation for hyperbolic conservation laws requires high order consistent numerical
fluxes at the cell boundaries in order to form the flux differences across the uniformly-spaced cells. The conservative prop-
erty of the spatial discretization is obtained by implicitly defining the numerical flux function hðxÞ as
Fig. 1.
reconst
f ðxÞ ¼ 1
Dx

Z xþDx
2

x�Dx
2

hðnÞdn;
such that the spatial derivative in (12) is exactly expressed by a conservative finite difference formula at the cell boundaries
duiðtÞ
dt

¼ 1
Dx

hiþ1
2
� hi�1

2

� �
; ð13Þ
where hi�1
2
¼ h xi�1

2

� �
.

High order polynomial interpolations to hi�1
2

are computed using known grid values of f ; f i ¼ f ðxiÞ. The fifth-order WENO-
Z scheme uses a 5-points stencil, hereafter named S5, which is subdivided into three 3-points stencils fS0; S1; S2g, as shown in
Fig. 1. The fifth-order polynomial approximation f̂ i�1

2
¼ hi�1

2
þ OðDx5Þ is built through the convex combination of the interpo-

lated values f̂ k xi�1
2

� �
, in which f kðxÞ is the third degree polynomial below, defined in each one of the stencils Sk:
f̂ i�1
2
¼
X2

k¼0

xZ
k f̂ k xi�1

2

� �
; ð14Þ
where
f̂ k xiþ1
2

� �
¼ f̂ k

iþ1
2
¼
X2

j¼0

ckjfi�kþj; i ¼ 0; . . . ;N: ð15Þ
The ckj are Lagrangian interpolation coefficients (see [2]), which depend on the left-shift parameter k ¼ 0;1;2, but not on the
values fi.

The WENO-Z weights xZ
k are defined as
xZ
k ¼

aZ
kP2

l¼0
aZ

l

; aZ
k ¼

dk

bZ
k

; k ¼ 0;1;2: ð16Þ
The coefficients d0 ¼ 3
10 ; d1 ¼ 3

5 ; d2 ¼ 1
10 are called the ideal weights since they generate the central upstream fifth-order

scheme for the 5-points stencil S5. The weights xZ
k are a function of the smoothness indicators bZ

k , namely,
bZ
k ¼ 1þ s5

bk þ �

� �2
 !

; ð17Þ
where � is a small number (typically � ¼ 10�12) used to avoid the division by zero in the denominator of (17) and the classical
smoothness indicators bk measure the regularity of the kth polynomial approximation f̂ kðxiÞ at the stencil Sk and are given by
x
i

x
i+1

x
i+2

x
i-1

x
i-2

x
i+1/2

S2

S0

S1

S5 τ
5

β0

β2

β1

The computational uniform grid xi and the five points stencil S5, composed of three 3-points stencils S0; S1; S2, used for the fifth-order WENO
ruction step.
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bk ¼
X2

l¼1

Dx2l�1
Z x

iþ1
2

x
i�1

2

dl

dxl
f̂ kðxÞ

 !2

dx: ð18Þ
The expression of the bk in terms of the cell averaged values of f ðxÞ; fi are given by
b0 ¼
13
12
ðfi�2 � 2f i�1 þ fiÞ2 þ

1
4
ðfi�2 � 4f i�1 þ 3f iÞ

2
; ð19Þ

b1 ¼
13
12
ðfi�1 � 2f i þ fiþ1Þ2 þ

1
4
ðfi�1 � fiþ1Þ2; ð20Þ

b2 ¼
13
12
ðfi � 2f iþ1 þ fiþ2Þ2 þ

1
4
ð3f i � 4f iþ1 þ fiþ2Þ2: ð21Þ
and
s5 ¼ jb0 � b2j: ð22Þ
All bZ
k are smaller than unity and they are all close to 1 at smooth parts of the solution.

The general idea of the weights definition (16) is that on smooth parts of the solution the smoothness indicators bk are all
small and about the same size, generating weights xk that are good approximations to the ideal weights dk. On the other
hand, if the stencil Sk contains a discontinuity, bk is Oð1Þ and the corresponding weight xk is small relatively to the other
weights. This implies that the influence of the polynomial approximation of hi�1

2
taken across the discontinuity is diminished

up to the point where the convex combination (14) is essentially non-oscillatory. Fig. 1 shows the case where stencil S2 is
discontinuous, yielding b0 and b1 to be much smaller than b2. By (16), this results on x2 being a small number in the convex
combination (14).

The process synthesized by (14) and (15) is called the WENO reconstruction step, for it reconstructs the values of hðxÞ at
the cell boundaries of the interval Ii ¼ xi�1

2
; xiþ1

2

h i
from its cell averaged values f ðxÞ in the stencils fSk; k ¼ 0;1;2g.

Following [1], the hyperbolicity of the Euler equations (29), ignoring the source term S, admits a complete set of right and
left eigenvectors for the Jacobian of the system. The eigenvalues and eigenvectors are obtained via the linearized Riemann
solver of Roe [21]. The first order Lax–Friedrichs flux is used as the low-order building block for the high order reconstruction
step of the WENO schemes (see Eq. (2.5) in [1]). After projecting the fluxes on the characteristic fields via the left eigenvec-
tors, the high order WENO reconstruction step is applied to obtain the high order approximation at the cell boundaries,
which are projected back into the physical space via the right eigenvectors. We refer to [1] for further details on the
algorithm.

4. Particle-mesh method

4.1. Particle solver

The Lagrangian tracking algorithm of the particles consists of three stages per particle, including searching the element
that a particle is located in, interpolating the field variables to the particle location, and pushing the particle forward with a
time integration method.

Locating the host cell of a particle is a trivial task on a structured grid. In [14,17] a tracking algorithm was discussed in a
system that only couples the field equations to the particles in one direction, e.g., passive advection. It was shown that
interpolation and time integration may, in most cases, be of a lower order than the approximation order of the spatial
and time discretization of the field equations to accurately capture the particle traces. Jacobs and Hesthaven [14], however,
found that to avoid aliasing errors and an unphysical numerical total energy increase, the order of interpolation has to
equal the approximation order k of the stencil Sk and the time integration of the particle solver and the carrier phase solver
have to match.

We compare lower and higher-order interpolation in this paper. In the section below we discuss several interpolation
schemes, including an ENO interpolation that is ideally suited for interpolation of flow solutions containing shock disconti-
nuities. Throughout the paper, we take the scheme used for time integration the same for the particle and the Euler solver.

4.2. Coupling of WENO and particle solver

The particle and the carrier phase exchange momentum and energy. The carrier phase velocity and temperature at the
particle position determines the influence of the carrier phase on the particle. This velocity and temperature is determined
by interpolation of carrier flow values at the cell centers, i, surrounding the particle position. The particle influence is dis-
tributed on the carrier phase by the weighing function K in (11). The interpolation method and weighing function determine
the accuracy and characteristics of the Eulerian–Lagrangian frame coupling.

Low-order interpolations are well-known to lead to aliasing errors and instability in particle-mesh methods [10]. High
order interpolation and weighing reduces these inaccuracies [10,20]. We therefore search for the high order interpolation
and weighing that is consistent with the high order WENO-Z method.
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In what follows, we present the lower order interpolation and weighing for reference, and then discuss high order central
interpolation. Gibbs oscillations plague the accuracy of the central interpolation over shocks. Here, we propose and test an
ENO interpolation to improve interpolation in these areas. A high order spline interpolation [20] reduces aliasing errors and
noise in the source determination in (11).

4.2.1. Interpolation
In smooth flow areas without shocks, a central interpolation to the particle position is the most accurate and consistent

with the finite difference WENO-Z scheme, and thus preferred. We use the Lagrange interpolating polynomial of degree k,
Fig. 2.
differen
PkðxpÞ ¼
Xipþk=2

i¼ip�k=2

Q ðxiÞliðxpÞ; ð23Þ
where ip represents the nearest cell center to the left of the particle position. The number of interpolating points k equals the
number of points used in the kth order WENO scheme. In the case of the fifth-order WENO scheme, k ¼ 5.

In shocked regions the centered interpolation will produce undesirable Gibbs oscillations. With an ENO interpolation [18],
these oscillations are essentially removed.

In ENO interpolation, the interpolating points are determined based on smoothness of the function measured by the di-
vided differences. The kth degree divided differences are determined first.

The 0th order divided differences of Q are defined by:
Q ½xi� � QðxiÞ: ð24Þ
The jth degree divided difference for j P 1 are defined by
Q ½xi; . . . ; xiþj� �
Q ½xiþ1; . . . ; xiþj� � Q ½xi; . . . ; xiþj�1�

xiþj � xi
: ð25Þ
Starting from a two point stencil fxip ; xipþ1g, the interpolation stencil is expanded to k points based on a comparison of the
divided differences of the increasing order at ip (see Fig. 2). The smallest second order divided differences at ip of the two
potential three point stencils minfQ ½xip�1; xip ; xipþ1�;Q ½xip ; xipþ1; xipþ2�g indicates the smoothest interpolation stencil and is
therefore chosen. This procedure is repeated until a k point interpolant is found. The Lagrange interpolant in (23) then inter-
polates the relevant gas properties to the particle position.

In Fig. 2, we give an example of a typical ENO stencil close to a shock. We find the nearest grid point to the left of the
particle. The magnitude of the first order divided differences at this grid point are larger than the divided differences to
the left because of the shock jump. The stencil is therefore extended to the left. The same holds for the divided difference
of a higher-order than one. So, the ENO stencil will be preferential one-sided to the left of the particle if the particle is located
in the cell including a shock.

In two-dimensions, the same procedure can be used along the separate dimension on the tensor grid. The divided differ-
ences are determined along horizontal and vertical lines in the grid. With the one dimensional approach outlined above, we
find the left most and bottom most grid point of the interpolation stencil with k� k points for each grid point in the domain.

We give an example of a two-dimensional ENO stencil in Fig. 3. The particle’s nearest grid point is found to the left and
bottom of the particle. The left and bottom point of the ENO stencil are determined by comparison of the divided difference
along the horizontal and vertical line crossing the nearest grid point. If a particle is located in a cell with a shock, then the
ENO is one-sided to the left and bottom of the particle. We note that if two shocks cross the k interpolation stencil, then this
particle

(k=5)ENO stencil

k=2 stencil

shock
point
nearest grid

One dimensional ENO stencil for interpolation to a particle located near a shock. The interpolation stencil is determined based on the divided
ces at the particle’s nearest grid point to the left of the particle.



left point particle

shock

ENO stencil

bottom point

Fig. 3. Two-dimensional ENO stencil for interpolation to a particle located near to a shock. The left and bottom point of the interpolation stencil is
determined based on the divided differences along the horizontal grid lines and the vertical grid lines at the particle’s nearest grid point to the left and
bottom of the particle position.
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procedure will fail to recognize the second shock. We did not encounter stability problems in the simulations and a more
sophisticated method based on the high-order multi-resolution analysis is under study.

4.2.2. Weighing
Low-order particle-methods [10] usually weigh with a zeroth or first order function for Kðx; yÞ in (11) as shown in Fig. 4.
The 0th order weighing function is a tophat function,
Kðx; 0Þ ¼ 1
Dx

; 0 6 x 6
1
2

Dx; ð26Þ
that weighs the particle influence to the nearest grid point. The first order weighing function,
Kðx; 0Þ ¼ 1
Dx

Dx� x
Dx

; ð27Þ
typically used, can be interpreted as a local area weighing. The particle splits a cell into two subcells. The area of the subcell
to the left determines the particle influence to the grid point on the right of the particle and vice versa. In two-dimensions
the quadrilateral cell is divided into four new subcells by the particle. The subareas of these are weighted to opposite grid
points.
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Fig. 4. The pth order weighing function.
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The lower order weighing functions are inconsistent with the higher-order method. The lack of smoothness of the particle
shape results in Gibbs type phenomena that affect accuracy and introduce noise in the source term, S. The non-smooth shape
is also enhancing instability [10]. Many of these undesirable affects can be reduced by weighing with the shape function de-
scribed in [19] or weighing with a high order interpolant.

Several options are in principle possible for a higher-order weighing. Desirable properties of the weighing function are:
1
A

R
A K ¼ 1

maxðKÞ at xp

M � 1 differentiable M > 1:

8><
>: ð28Þ
The first criterion states that the area ðAÞweighted average of K is equal to one and ensures that the magnitude of individual
particle momentum and energy is conserved. The second criterion ensures that the particle influence is highest at the par-
ticle location. The third ensures smoothness of the function up to order M consistent with the Mth order stencil used for the
WENO-Z method.

We consider the high order spline interpolation discussed in [20], that have all three properties. The spline Sk is con-
structed by the convolution of the square nearest grid point or zero order weighing function. For large k the spline ap-
proaches the Gaussian function. The zeroth mode of the function in wave space is free of aliasing errors, and the higher
component of the function in wave space are smaller than equivalent Lagrangian interpolations.

5. Numerical experiments

We test and validate the WENO-Z based PSIC algorithm with one and two-dimensional computations of the particle-
laden flow that evolves when a shock runs through a cloud of particles. We shall refer the third order WENO-Z method with
the second order central interpolation scheme as PSIC/WENO-Z-3 and the fifth-order WENO-Z method with the fifth-order
ENO interpolation scheme as PSIC/WENO-Z-5 or simply PSIC/WENO-Z, unless specified otherwise.

To summarize the algorithm, we approximate the system of hyperbolic Euler equations (2) in the Eulerian frame
dQ
dt
¼ �r �~FðQ Þ þ Sð~xp �~xÞ; ð29Þ
on each grid point. A Np number of particles are individually traced in the Lagrangian frame with
d~xp

dt
¼ ~vp; ð30Þ

d~vp

dt
¼ f1

~v f �~vp

sp

� �
� 1

qp
$Pjf ; ð31Þ

dTp

dt
¼ 1

3
Nu
Pr

Tf � Tp

sp

� �
: ð32Þ
Interpolation determines ~v f , and Tf , while weighing determines Sð~xp �~xÞ.
The resulting system of ODE can be updated implicitly or explicitly. If the particle phase and continuum phase have dif-

ferent time scales then an implicit–explicit method can increase the scheme’s efficiency [15]. In this study, time integration
is performed without typical splitting used for many particle-mesh methods e.g. leap-frog methods [10]. We employed the
third order total variation diminishing Runge–Kutta scheme (RK–TVD) [2]:
~U1 ¼ ~Un þ DtLð~UnÞ
~U2 ¼ 1

4 ð3~Un þ ~U1 þ DtLð~U1ÞÞ;
~Unþ1 ¼ 1

3 ð~Un þ 2~U2 þ 2DtLð~U2ÞÞ
ð33Þ
where L is the spatial operator as in the right side of (29) or the right hand side of (32). The CFL number is set to 0.4.
The following numerical experiments were performed on a SUN workstation equipped with a AMD Opteron(tm) 250 pro-

cessor and 3 GB of memory.

5.1. One dimensional shock interacting with a cloud of particles

We consider the one dimensional problem of a shock running into a cloud of particles, that was studied extensively com-
putationally and experimentally by Boiko et al. [12]. A shock tube problem is setup in the domain x 2 ½�5;6� with length,
L ¼ 11. The state of the pre-shock flow is
½qR; uR; pR� ¼ ½1;0;1�: ð34Þ
The post-shock state can be computed via the well-known Rankine–Hugoniot relations for a given Mach number Ms. Here,
we use Ms ¼ 2:8 with the shock at xs ¼ 0. A reflective boundary condition is imposed on both ends of the shock tube.
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Fig. 5. Pressure profile at times (a) t1 ¼ 0:275, (b) t2 ¼ 0:55, and (c) t3 ¼ 0:825 for three grid spacing Dx ¼ 0:055; 0:275;0:01375 as computed with the fifth-
order PSIC/WENO-Z-5 method, compared to the third order Rusanov based method by Boiko et al. [12].
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A cloud of particles with a volume concentration of 3% is initialized in the interval [0,0.2981]. The particle response time
and density are, sp ¼ 3:9296� 103 and qp ¼ 1200, respectively, corresponding to the experiment with acrylic particles in
[12]. We take the Reynolds number needed to compute the particle traces according to the experiment at
Ref ¼ 1:7638� 106.

As a reference, we perform computations with the fifth-order WENO-Z method and particle interpolation and weighing
based on a two point stencil. In Fig. 5 we compare the pressure evolution for three grid spacings, Dx ¼ L=N;N ¼ 200;400;800
with the computations performed in [12] with a classical second order PSIC method based on a third order Rusanov method.
It is noted that experiments of the particle-shock flow in a shock tube in [12] compared well with the PSIC computations.

A left moving reflective shock is generated when the shock hits the cloud of particles shortly after time t > 0. Moreover,
an expansion fan is formed at the rear end of the cloud after the shock has passed the cloud of particles. It is clear in Fig. 5
that the high order WENO-Z method gives a sharper representation of the shock and improves the resolution of expansion
fan as compared to the Rusanov based method. We underscore the importance of a high order carrier flow solver in Fig. 6 by
comparing PSIC based on a third, fifth and seventh order WENO-Z method. The third order PSIC/WENO-Z-3 diffuses the shock
and the expansion fan much like the Rusanov based PSIC method, where the higher-order PSIC/WENO-Z increasingly sharp-
ens the shock capturing and improves the resolution in the expansion fan.

To fully take advantage of the high order features of the WENO method the PSIC method and coupling have to be high
order. This requires a high order interpolation of the carrier flow to the particle position. In smooth regions of the flow, a
high order central interpolation scheme is most accurate, however, in shocked regions Gibbs oscillations can be expected
with a central interpolation scheme if the order of the interpolation is greater than one. Fig. 7 confirms the inaccurate solu-
tion with a central interpolation scheme. The pressure solution oscillates to the left of the right running shock and to the
right of the reflected shock. The oscillations persist throughout the computed time interval.

With ENO interpolation these oscillations can be prevented (Fig. 8). The pressure trend to the left of the right running
shock now matches well with the solution computed via the low-order interpolation scheme.

With increasing order of the weighing function, we observed a slightly smoother source term, S, that can be expected to
lead to reduced aliasing errors and noise in the coupling between the carrier phase and the particle phase. No significant
difference between the solutions of the second order and high order weighing (not shown) were observed for this case.
S3
S5
S7

x

p

-0.5 0 0.5 1

5

10

15

20

25

x

p

-0.5 0 0.5 1

5

10

15

20

25

x

p

-0.5 0 0.5 1

5

10

15

20

25

Fig. 6. Pressure profile at times (a) t1 ¼ 0:275, (b) t2 ¼ 0:55, and (c) t3 ¼ 0:825 for the third, fifth and seven order PSIC/WENO-Z method.
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points, s ¼ 2, three points, s ¼ 3, and five points, s ¼ 5, interpolation stencil.

s=2
ENO,s=5

x

p

-0.5 0 0.5 1 -0.5 0 0.5 1

5

10

15

20

25

x
0.5 0 0.5 1

x

p

5

10

15

20

25

p

5

10

15

20

25

Fig. 8. Pressure profile at times (a) t1 ¼ 0:275, (b) t2 ¼ 0:55, and (c) t3 ¼ 0:825 for the fifth-order PSIC/WENO-Z-5 method with a two point interpolation
stencil, s ¼ 2, and a five point ENO interpolation stencil, s ¼ 5.

Fig. 9. Contour of vorticity magnitude jxj of the Mach 3 shock interaction with 40 K bronze particles as computed by (Top) the third order PSIC/WENO-Z-3
and (Bottom) the fifth-order PSIC/WENO-Z-5 methods at time t ¼ 0:225. The contour lines are between 5 and 305 with an increment of 10. The number of
grid points for the Euler equation in the Eulerian frame is 1500� 500 in the x and y directions, respectively.
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5.2. Two-dimensional shock interaction with a cloud of 40 K bronze particle

In a more rigorous test, we study the shock-particle interaction in two-dimensions. In Kiselev et al. [13], the two-dimen-
sional computation was performed with a PSIC method based on a third order Rusanov scheme. We use their setup to val-
idate the high order WENO-based PSIC. We initialize a right running Mach three shock Ms ¼ 3 at xs ¼ 0:175 in a rectangular
domain ½0;3� � ½�0:611;0:611� (see the top figure in Fig. 10). Inflow and outflow boundary conditions are specified, respec-
tively, in the x direction. Periodic boundary conditions are imposed in the y direction. A uniformly distributed bronze particle
cloud is seeded in a rectangular shape, ½0:175;0:352� � ½�0:044;0:044�, with zero initial velocity. The volume concentration
Fig. 10. A snapshot of the density q (left column), the vorticity magnitude jxj (middle column) and the trajectory of the particle clouds (right column) for
time t ¼ 0, 0.05, 0.1, 0.225, 0.5, 0.75 (from top to bottom) as computed by the fifth-order PSIC/WENO-Z-5 method with ENO interpolation scheme. The
dotted rectangle in the figures showed the original shape and position of the particle clouds at t ¼ 0 for easy reference. The shock Mach number is Ms ¼ 3.
The number of grid points used in the Eulerian frame is 1500� 500 in the x and y directions, respectively. The total number of bronze particle clouds is 40 K.
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of the particles in the cloud is 4%. The particle response time and density are, sp ¼ 51:69 and qp ¼ 7:42� 104, respectively,
corresponding to an experiment with the bronze particle cloud in [13]. We take the Reynolds number needed to compute the
particle traces according to the experiment at Ref ¼ 3:387� 107. In our discussion of the results below, we shall refer to the
collection of the particles as shape.

In the following simulations, the number of grid points used to solve the Euler equation in the Eulerian frame is
1500� 500 in the x and y directions, respectively. The total number of particles is 40 K. The CFL number is 0.4.

In the two-dimensional case, the PSIC/WENO-Z that uses a high order central interpolation scheme is found to be more
prone to instability. The Gibbs oscillations introduced by high order central interpolation are not dissipated by the WENO-Z
method in two-dimensions, resulting in an unstable scheme. The essentially non-oscillatory characteristic of ENO eliminate
these numerical oscillations. The ENO computations were stable and were in excellent agreement with published results and
low order computations.

Using ENO interpolation scheme, however, comes at the price of evaluating the divided differences and finding the appro-
priate smooth interpolating stencils for particles located within a cell. In our limited tests with 40 K particles, approximately
20% of the total CPU time in the particle interpolation stage is used to locate the smooth interpolation stencils.

In Fig. 9, a contour plot of the vorticity magnitude jxj computed with the third order PSIC/WENO-Z method using a sec-
ond order central interpolation scheme (PSIC/WENO-Z-3) is compared to the vorticity magnitude contour computed with the
fifth-order PSIC/WENO-Z method using high order ENO interpolation scheme (PSIC/WENO-Z-5) at the top and bottom fig-
ures, respectively. The solution computed by the third order method is far more dissipative than the fifth-order scheme;
The small vortical roll-up generated by a small jet moving to the right at the symmetry axis ðy ¼ 0Þ is clearly under-devel-
oped in the third order method. The small scales disturbances generated by the particle-wave interaction throughout the
figure are smoothed out as well in the third order method. The recirculation structures right behind the cloud are stronger
(higher vorticity) and richer (more detail) in the fifth-order solution as compared to the third order solution.

In the following, we describe the flow evolution of the shock-particle cloud interaction using the fifth-order (PSIC/WENO-
Z-5) method to illustrate the complexity of this flow, and the potential of these methods to capture detailed multi-scale flow
physics for long times.

In Figs. 10 and 11, we present snapshots of the density q (left column), the vorticity magnitude jxj (middle column) and
the trajectory of the particles (right column) at non-dimensional times t ¼ 0, 0.05, 0.1, 0.225, 0.5, 0.75. Fig. 12 shows the den-
sity, q, contours with the trajectory of the particles superimposed on it at time t ¼ 1 for x 2 ½0:05;0:205�. The dotted rectan-
gle in the figures shows the original shape and position of the particles at t ¼ 0 for reference.

In the time interval from t ¼ 0 to t ¼ 0:05, the right running Mach 3 shock hits the particle and a reflected bow shock
forms at the front end of the shape as seen in the density plot (Fig. 10, left column). The right running shocks move along
the top and bottom sides of the shape and are curved close to the shape. Strong vorticity x is generated by the accelerated
flow in the wake of the curved shock. The shear layer emanating from the front corners of the shape are also clearly visible by
Fig. 11. See Fig. 10 for caption.



Fig. 12. The density q contour and the superimposed trajectory of the particle clouds at time t ¼ 1 as computed by the fifth-order PSIC/WENO-Z-5 method
with ENO interpolation scheme. The domain size in x is [0.05,2.05] (see Fig. 10 for additional caption).
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the increased vorticity magnitude in Fig. 10 (middle column). The accelerated flow stagnates at the front of the shape and
compresses the shape. The particles at the front end move towards the right at this early time and increase the particle den-
sity (Fig. 10, right column).

At times t ¼ 0:1 and t ¼ 0:225, the main shock has moved past the shape and the two curved shocks originated from the
top and bottom of the shape have moved towards and crossed the symmetry line at y ¼ 0. A Mach reflection occurs once the
curved shocks have crossed the symmetry lines, that connects the curved shock and the right running main shock. Further in
time, the flow complexity significantly increases, when the non-linearly interacting curved shocks affect the compression
wave in the particle cloud, and the vorticity generated at the rear end of the cloud.

The force exerted by the particles on the accelerated gas behind the main shock leads to a flow pattern comparable to a
flow over a blunt body. The flow separated on the top and bottom sides of the shape, and a recirculation forms at the back of
the shape. The shape is compressed inward on the top and bottom sides toward the symmetry line at y ¼ 0 as shown in the
trajectory of the particles. The strong vorticity in the separated shear zones pulls the particles out of the shape, which leads to
the formation of the particle arms and legs on the side and the back of the shape. The arms and legs follow the separated
shear layers. At the back of the shape, the particle legs thus bend inward and the particle arm on the sides moves upward
and downstream.

The gas density increases inside the shape, but the pressure remains constant (not shown). The particles cool the gas
through heat exchange [13]. The lowered temperature leads to an increased density to satisfy the ideal gas law (see
Fig. 10), since the pressure remains constant in the cloud to balance the particle force.

The overall flow field maintains its symmetry up to this point in time.
The flow becomes unstable and loses its symmetry at later time (see figures for t ¼ 0:5 and t ¼ 0:75). In the wake of the

shape an asymmetric shedding is observed in the density and vorticity contour (Fig. 11, left two columns). Increasingly more
particles are dispersed upward and downstream of the cloud forming long and thicker particle arms into the main flow and
around the shape. A compression wave that formed at the side of the shape at early time, has now moved sideways away
from the symmetry line, and has run into the particle arms. This compression wave reshocks the particle-laden flow in
the arms, and further widens the particle arms. This re-shocking induces intermittent wave patterns in the side shear layer
that interact with the particles forming streaks and bunching of the particles.

Throughout the computed time interval the side arms shield the high-speed flow generated by the right running shock
from the wake of the shape. Only a small number of particles are dispersed in the legs at the rear of the shape, since the side
arms divert the main high-speed flow away from the shape and the relatively low flow velocities in the wake of the shape do
not carry the particles as much as in the side arm.

In Fig. 12 the density flow field with a superimposed particles trajectory at t ¼ 1 shows the flow field in a larger domain,
and illustrate the tremendous complexity of this flow, with coupled multiple shock reflections, and particle dispersion. A full
length animation of the density field of the Mach 3 shock-particle-laden flow is posted at [http://attila.sdsu.edu/jacobs/PIC-
TURES/Rho_40K.avi].

6. Conclusions and future developments

We have developed a high order particle-source-in-cell (PSIC/WENO-Z) algorithm based characteristic based conservative
finite difference WENO-Z method for computation of particle-laden flows with shocks.

A high order ENO interpolation ensures a stable high order interpolation of the carrier gas to the particle position. In one
dimension, the interpolation stencil is determined using divided differences. A Lagrange interpolant then interpolates the
carrier gas from the finite difference grid to the particle position. In two-dimensions, the divided differences along horizontal

http://attila.sdsu.edu/jacobs/PICTURES/Rho_40K.avi
http://attila.sdsu.edu/jacobs/PICTURES/Rho_40K.avi


G.B. Jacobs, W.-S. Don / Journal of Computational Physics 228 (2009) 1365–1379 1379
and vertical lines on the tensor grid determine the interpolating stencil. A Lagrange interpolation again determines the car-
rier gas properties at the particle location.

High order central interpolation was shown to be inaccurate and in two-dimensional cases unstable. A high order weigh-
ing function, that reduces aliasing errors and noise, was implemented. A third order RK–TVD scheme integrates both the par-
ticles and carrier gas phase in time.

We tested the algorithm in a one dimensional shock-particle cloud interaction problem. We showed that the high order
WENO-based PSIC/WENO-Z method captures shock movement more accurately than the third order Rusanov method, while
the particle motion and the expansion region behind the shock compared well to published results. Numerical induced oscil-
lations were clearly visible when a central high order particle interpolation was used. The central high order weighing
slightly smoothened the solution, but did not have a significant effect on the particle-laden flow.

A two-dimensional test on a shock-particle cloud interaction, confirmed the above findings. In two-dimensions, the high
order central interpolation is unstable. Long time integration illustrated that the algorithm is capable of capturing shocks and
fine scale flow features at the same time.

Our current efforts focus on a one sided weighing of the particles consistent with the ENO interpolation. The central high
order weighing we employed in this study diffuses the particle influence over the grid. Even though this leads to favorable
stability properties, the smearing at shock locations is likely to negatively affect the accurate capturing of the shock
capturing.

We are also working on a particle-source-in-cell method with a hybrid spectral-WENO kernel in a multi-domain frame-
work for solution of the gas dynamics. In the hybrid method [22], the WENO method effectively captures shocks in shocked
subdomains, while in smooth subdomains, a more efficient spectral method solves the gas flow. A high order smoothness
indicator based on the high order multi-resolution analysis switches the WENO and spectral methods adaptively in space
and time as the flow evolves in time in each subdomain. A consistent high order particle interpolation and weighing in
the hybrid is currently under development.

We illustrated the potential of this method to identify detailed flow physics that are found in high-speeds flow environ-
ments. In future work, we will extend the capabilities of the algorithm to include viscous flow models, large-eddy modeling,
chemical reactions, and extension and parallel implementation of the algorithm to three dimension in complex geometry,
enabling the analysis of high-speed combustors.
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